Keras是一个用于构建和训练深度学习模型的高级神经网络库。迁移学习是一种利用已经训练好的模型在新任务上进行训练的技术。下面介绍如何使用Keras进行迁移学习:
keras.applications
模块中的函数来加载这些模型。例如,使用以下代码加载VGG16模型:from keras.applications import VGG16
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
for layer in base_model.layers:
layer.trainable = False
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile()
方法来编译模型,使用model.fit()
方法来训练模型。model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_val, y_val))
通过以上步骤,你可以使用Keras进行迁移学习并训练自己的深度学习模型。
辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读: 如何在Keras中实现序列到序列的学习