如何在Keras中进行迁移式强化学习

1996
2024/3/18 11:19:52
栏目: 深度学习
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在Keras中进行迁移式强化学习可以通过以下步骤实现:

  1. 导入必要的库:
from keras.models import Model
from keras.layers import Dense, Input
from keras.optimizers import Adam
  1. 加载预训练的模型和环境:
from keras.applications import VGG16
from rl.agents.dqn import DQNAgent
from rl.policy import BoltzmannQPolicy
from rl.memory import SequentialMemory
  1. 设置环境和动作空间的维度:
env = gym.make('your_environment')
np.random.seed(123)
env.seed(123)
nb_actions = env.action_space.n
  1. 定义模型结构:
input_shape = env.observation_space.shape
input_tensor = Input(shape=input_shape)
base_model = VGG16(include_top=False, input_tensor=input_tensor)
  1. 添加自定义头部:
x = base_model.output
x = Dense(512, activation='relu')(x)
x = Dense(nb_actions, activation='linear')(x)
model = Model(inputs=base_model.input, outputs=x)
  1. 编译模型:
model.compile(optimizer=Adam(lr=1e-4), loss='mse')
  1. 定义内存和策略:
memory = SequentialMemory(limit=10000, window_length=1)
policy = BoltzmannQPolicy()
  1. 创建代理并训练:
dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, policy=policy,
               nb_steps_warmup=1000, target_model_update=1e-2)
dqn.compile(Adam(lr=1e-3), metrics=['mae'])
dqn.fit(env, nb_steps=50000, visualize=False, verbose=2)

通过以上步骤,您就可以在Keras中实现迁移式强化学习了。记得根据您的具体问题和环境进行适当的调整和优化。

辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读: tensorflow和keras的区别是什么