R语言中ROC曲线和AUC的作用是什么

1087
2024/3/25 12:39:42
栏目: 编程语言
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在R语言中,ROC曲线和AUC(Area Under the Curve)常用于评估分类模型的性能。

ROC曲线是Receiver Operating Characteristic curve的缩写,用于显示分类模型在不同阈值下的敏感性和特异性之间的权衡。ROC曲线的横轴是假阳性率(False Positive Rate,FPR),纵轴是真阳性率(True Positive Rate,TPR),曲线下方的面积就是AUC。

AUC值越接近1,代表模型的性能越好;AUC值为0.5说明模型的预测效果与随机猜测没有区别;AUC值小于0.5说明模型的性能比随机猜测还要差。

因此,通过ROC曲线和AUC值可以直观地评估分类模型的性能,帮助选择最适合的模型。

辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读: r语言怎么导入excel数据