Python装饰器是一种在不修改原始函数代码的情况下,为函数增加新功能的方法。装饰器可以提高性能的几种方式如下:
from functools import lru_cache
@lru_cache(maxsize=None)
def fibonacci(n):
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
import asyncio
async def async_function():
# 异步操作
pass
@asyncio.coroutine
def wrapped_async_function():
yield from async_function()
from multiprocessing import Process
def parallel_function(func):
def wrapper(*args, **kwargs):
p = Process(target=func, args=args, kwargs=kwargs)
p.start()
return p
return wrapper
@parallel_function
def my_function():
# CPU密集型操作
pass
def length_decorator(func):
def wrapper(*args, **kwargs):
result = func(*args, **kwargs)
print(f"Length of the result is {len(result)}")
return result
return wrapper
@length_decorator
def my_function(s):
return s * 2
总之,Python装饰器可以通过缓存、异步处理、并行处理和代码优化等方式提高性能。在实际应用中,可以根据具体需求选择合适的装饰器来优化代码。
辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读: 异步爬虫python怎么写