Pandas中的缺失值怎么处理

949
2024/6/4 16:37:51
栏目: 编程语言
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在Pandas中,处理缺失值的方法通常有以下几种:

  1. 删除缺失值:可以使用dropna()方法删除含有缺失值的行或列,参数axis可以指定是删除行还是删除列。
df.dropna()  # 删除含有缺失值的行
df.dropna(axis=1)  # 删除含有缺失值的列
  1. 填充缺失值:可以使用fillna()方法填充缺失值,可以指定填充的值,如0、平均值、中位数等。
df.fillna(0)  # 将缺失值填充为0
df.fillna(df.mean())  # 将缺失值填充为列的平均值
  1. 插值填充:可以使用interpolate()方法进行插值填充,根据缺失值前后的值进行插值填充。
df.interpolate()  # 插值填充缺失值
  1. 使用其他值代替缺失值:可以使用replace()方法将缺失值替换为其他指定的值。
df.replace(np.nan, -1)  # 将缺失值替换为-1

辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读: 怎么用pandas读取指定单元格数据