要对车载摄像头视频进行道路标志检测,可以使用OpenCV库中的图像处理和机器学习算法来实现。下面是一个简单的步骤:
import cv2
import numpy as np
cap = cv2.VideoCapture('video.mp4')
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
net = cv2.dnn.readNetFromDarknet('yolov3.cfg', 'yolov3.weights')
while(cap.isOpened()):
ret, frame = cap.read()
if not ret:
break
blob = cv2.dnn.blobFromImage(frame, 1/255, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
layers_names = net.getLayerNames()
output_layers = [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
outs = net.forward(output_layers)
# 处理检测结果
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and class_id == 7: # class_id 7表示道路标志
# 在图像上绘制检测结果
...
cv2.imshow('Detected Road Signs', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
在上面的代码中,我们使用了一个预训练的YOLO模型来检测道路标志,并在图像上绘制了检测结果。你可以根据具体的需求和数据集调整模型和参数。
辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读: opencv如何获取轮廓内所有像素