Pandas中怎么评估分类模型的性能

1332
2024/4/21 10:51:54
栏目: 编程语言
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在Pandas中,评估分类模型的性能通常需要使用混淆矩阵和一些评估指标。

  1. 混淆矩阵:可以使用Pandas的crosstab函数来计算混淆矩阵。例如,假设y_true是实际类别的Series,y_pred是预测类别的Series,可以使用以下代码计算混淆矩阵:
confusion_matrix = pd.crosstab(y_true, y_pred)
  1. 准确率、召回率和F1分数:可以使用sklearn.metrics中的函数来计算这些评估指标。首先,需要将y_true和y_pred转换为numpy数组,然后可以计算准确率、召回率和F1分数:
from sklearn.metrics import accuracy_score, recall_score, f1_score

accuracy = accuracy_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)

print("Accuracy: ", accuracy)
print("Recall: ", recall)
print("F1 score: ", f1)
  1. 分类报告:可以使用sklearn.metrics中的classification_report函数来生成包含准确率、召回率、F1分数等信息的分类报告。
from sklearn.metrics import classification_report

report = classification_report(y_true, y_pred)
print(report)

通过以上方法,可以在Pandas中评估分类模型的性能并获取详细的性能指标。

辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读: Pandas中怎么应用条件格式