Spark中的DataFrame和Dataset有何异同

741
2024/3/13 17:49:04
栏目: 大数据
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

DataFrame和Dataset都是Spark中用来表示数据集的数据结构,但是在Spark中有一些不同之处。

  1. DataFrame是一种分布式的数据集,它是以一种类似于关系型数据库表格的方式组织数据的,每一行代表一个记录,每一列代表一个字段。DataFrame是基于RDD的高级抽象,提供了许多方便的操作函数和优化执行计划。

  2. Dataset是Spark 1.6版本引入的新的数据抽象,它是强类型的,可以支持编译时类型检查和代码优化。Dataset同时具有DataFrame和RDD的特性,可以通过编程接口实现操作数据的灵活性和通过SQL查询实现高性能的优化。

  3. 在Spark中,DataFrame是一个特殊的Dataset,它的元素类型是Row,而Dataset可以是任意的Java对象。

  4. 在使用上,DataFrame更适合用于处理结构化数据,而Dataset则更适合用于处理半结构化或非结构化的数据。DataFrame提供了更多的内置函数和操作,可以方便地处理数据,而Dataset可以更灵活地定义和处理数据。

总的来说,DataFrame和Dataset都是用来处理数据的高级抽象,但是DataFrame更适合处理结构化数据,而Dataset则更适合处理半结构化和非结构化的数据。DataFrame是Dataset的一种特殊形式,在大部分情况下可以使用DataFrame来完成数据处理任务。

辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读: 大数据Spark的使用方法是什么