在C语言中,实现PCA(主成分分析)降维通常涉及以下步骤:
下面是一个简单的C语言实现示例,假设我们有一个包含n个样本、m个特征的数据集,我们希望对其进行PCA降维到k个主成分:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
// 计算向量的点积
double dot_product(double *a, double *b, int n) {
double sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i] * b[i];
}
return sum;
}
// 计算向量的欧氏范数
double euclidean_norm(double *a, int n) {
double sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i] * a[i];
}
return sqrt(sum);
}
// 计算协方差矩阵
void covariance_matrix(double **data, double *mean, double **cov, int n, int m) {
for (int i = 0; i < m; i++) {
mean[i] = 0;
for (int j = 0; j < n; j++) {
mean[i] += data[j][i];
}
mean[i] /= n;
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
cov[i][j] = 0;
for (int k = 0; k < n; k++) {
cov[i][j] += (data[k][i] - mean[i]) * (data[k][j] - mean[j]);
}
cov[i][j] /= n - 1; // 使用无偏估计
}
}
}
// 计算特征值和特征向量
void eigen(double **cov, double *eval, double **evec, int m) {
// 这里使用简化的QR算法,实际应用中可能需要更复杂的实现
for (int i = 0; i < m; i++) {
// 特征向量归一化
double norm = euclidean_norm(evec[i], m);
for (int j = 0; j < m; j++) {
evec[i][j] /= norm;
}
// 计算特征值
eval[i] = dot_product(cov[i], evec[i], m);
}
// 对特征值进行排序
for (int i = 0; i < m - 1; i++) {
for (int j = i + 1; j < m; j++) {
if (eval[i] < eval[j]) {
double temp = eval[i];
eval[i] = eval[j];
eval[j] = temp;
double *temp_vec = evec[i];
evec[i] = evec[j];
evec[j] = temp_vec;
}
}
}
}
// PCA降维
void pca(double **data, double *mean, double **cov, int n, int m, int k, double **result) {
// 计算协方差矩阵
covariance_matrix(data, mean, cov, n, m);
// 计算特征值和特征向量
double *eval = (double *)malloc(m * sizeof(double));
double **evec = (double **)malloc(m * sizeof(double *));
for (int i = 0; i < m; i++) {
evec[i] = (double *)malloc(m * sizeof(double));
}
eigen(cov, eval, evec, m);
// 选择主成分
for (int i = 0; i < k; i++) {
result[i] = evec[i];
}
// 释放内存
free(eval);
for (int i = 0; i < m; i++) {
free(evec[i]);
}
free(evec);
}
int main() {
// 示例数据
double data[3][4] = {
{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12}
};
double *mean = (double *)calloc(4, sizeof(double));
double **data_ptr = (double **)malloc(3 * sizeof(double *));
for (int i = 0; i < 3; i++) {
data_ptr[i] = data[i];
}
// PCA降维
int k = 2; // 降维到2维
double **result = (double **)malloc(k * sizeof(double *));
for (int i = 0; i < k; i++) {
result[i] = (double *)malloc(4 * sizeof(double));
}
pca(data_ptr, mean, result, 3, 4, k, result);
// 输出降维后的结果
for (int i = 0; i < k; i++) {
printf("[%f, %f]\n", result[i][0], result[i][1]);
}
// 释放内存
free(mean);
for (int i = 0; i < 3; i++) {
free(data_ptr[i]);
}
free(data_ptr);
for (int i = 0; i < k; i++) {
free(result[i]);
}
free(result);
return 0;
}
请注意,这个示例仅用于演示PCA降维的基本步骤,实际应用中可能需要根据具体情况进行调整和优化。特别是特征值分解部分,这里使用了简化的QR算法,实际应用中可能需要使用更高效的算法。
辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读: c语言怎么删除字符串中相同字符