SciPy中怎么进行曲线拟合和数据建模

695
2024/6/12 16:17:13
栏目: 编程语言
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在SciPy中,可以使用curve_fit函数进行曲线拟合和数据建模。curve_fit函数的基本用法如下:

from scipy.optimize import curve_fit

def linear_func(x, a, b):
    return a * x + b

# 训练数据
x_data = [1, 2, 3, 4, 5]
y_data = [2.1, 3.9, 6.1, 8.2, 9.8]

# 使用curve_fit进行拟合
params, covariance = curve_fit(linear_func, x_data, y_data)

# 拟合参数
a_fit, b_fit = params

print("拟合参数 a:", a_fit)
print("拟合参数 b:", b_fit)

在上面的示例中,我们定义了一个线性函数linear_func,然后使用curve_fit函数对给定的数据进行拟合,得到拟合参数ab。根据具体的数据和模型,可以修改linear_func函数和数据,实现不同的拟合和数据建模。

辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读: SciPy中用于数据压缩的算法是什么