Scikit-learn中怎么实现K最近邻

723
2024/5/29 17:12:56
栏目: 编程语言
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在Scikit-learn中,可以使用KNeighborsClassifier类来实现K最近邻算法。以下是一个简单的示例代码:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建K最近邻分类器
knn = KNeighborsClassifier(n_neighbors=3)

# 拟合模型
knn.fit(X_train, y_train)

# 预测
y_pred = knn.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

在上面的代码中,首先加载了鸢尾花数据集,然后将数据集划分为训练集和测试集。接着创建了一个KNeighborsClassifier对象,并使用fit()方法拟合模型。最后使用predict()方法进行预测,并计算准确率。

辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读: Scikit-learn中怎么实现决策树