PyTorch中如何进行模型的参数初始化

771
2024/3/20 19:31:04
栏目: 编程语言
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在PyTorch中,可以通过定义一个函数来对模型的参数进行初始化。一般情况下,PyTorch提供了一些内置的初始化方法,如torch.nn.init模块中的一些函数。以下是一种常见的初始化方法:

import torch
import torch.nn as nn
import torch.nn.init as init

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.linear = nn.Linear(100, 10)

    def initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Linear):
                init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

model = MyModel()
model.initialize_weights()

在上面的代码中,我们定义了一个MyModel类,其中包含一个线性层nn.Linear(100, 10)。使用initialize_weights函数对模型的参数进行初始化,其中我们使用了Xavier初始化方法对权重进行初始化,并将偏置初始化为0。您也可以根据需要选择其他初始化方法。

辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读: 如何在PyTorch中使用批标准化层