要在Bokeh中构建一个实时股票市场仪表板,您可以按照以下步骤进行操作:
1、导入必要的库和模块:
```python
from bokeh.io import curdoc
from bokeh.layouts import column
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure
from bokeh.models import DatetimeTickFormatter
from bokeh.models.widgets import Div
from bokeh.models import HoverTool
from bokeh.models import Range1d
from bokeh.models import LinearAxis
import pandas as pd
import random
import time
```
2、创建一个实时数据源:
```python
source = ColumnDataSource(data=dict(
time=[], price=[]
))
```
3、创建一个绘图函数来绘制股票价格走势图:
```python
def create_figure():
p = figure(plot_width=800, plot_height=400, title="Real-time Stock Market Dashboard",
x_axis_label='Time', y_axis_label='Price', x_axis_type='datetime')
p.line(x='time', y='price', source=source, line_width=2, line_color="blue")
p.xaxis.formatter=DatetimeTickFormatter(
hours=["%H:%M"],
days=["%m/%d"],
months=["%m/%Y"],
years=["%Y"],
)
p.extra_y_ranges = {"volume": Range1d(start=0, end=max(volume))}
p.add_layout(LinearAxis(y_range_name="volume", axis_label="Volume"), 'left')
p.add_tools(HoverTool(
tooltips=[
("Time", "@time{%F %T}"),
("Price", "@price{$0.2f}")
],
formatters={
'@time': 'datetime',
}
))
return p
```
4、创建一个更新数据函数来更新数据源中的数据:
```python
def update_data():
new_data = dict(
time=[pd.Timestamp.now()],
price=[random.uniform(50, 150)]
)
source.stream(new_data, rollover=100)
```
5、创建一个回调函数来定时更新数据:
```python
def update():
update_data()
# 每隔1秒更新一次数据
curdoc().add_periodic_callback(update, 1000)
```
6、将绘图函数和数据源添加到文档中:
```python
plot = create_figure()
curdoc().add_root(column(plot))
```
7、运行应用程序:
在终端中运行以下命令来启动Bokeh服务器:
```
bokeh serve --show your_script.py
```
替换`your_script.py`为包含以上代码的Python脚本文件名。您将在浏览器中看到一个实时股票市场仪表板,显示股票价格的实时走势图。
辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读: Bokeh怎么实现自然语言处理结果的可视化