NLTK库中提供了一些用于评估文本可读性的方法。下面是一个简单的示例代码,演示如何使用NLTK库中的textstat
模块来评估文本的可读性:
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.text import Text
from textstat.textstat import textstat
# 载入文本
text = "This is a sample text to test readability using NLTK library."
# 分词
tokens = word_tokenize(text)
# 去除停用词
stop_words = set(stopwords.words('english'))
filtered_tokens = [word for word in tokens if word.lower() not in stop_words]
# 创建NLTK文本对象
text_nltk = Text(filtered_tokens)
# 计算文本可读性指标
flesch_reading_ease = textstat.flesch_reading_ease(text)
automated_readability_index = textstat.automated_readability_index(text)
coleman_liau_index = textstat.coleman_liau_index(text)
# 打印结果
print("Flesch Reading Ease Score:", flesch_reading_ease)
print("Automated Readability Index:", automated_readability_index)
print("Coleman-Liau Index:", coleman_liau_index)
运行上述代码后,将输出文本的Flesch Reading Ease Score(弗莱施阅读易度分数)、Automated Readability Index(自动可读性指数)和Coleman-Liau Index(科尔曼-利奥指数)等可读性指标。根据这些指标的数值,可以评估文本的可读性水平。
辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读: 怎么使用NLTK库进行文本规范化