PyTorch中怎么进行模型的量化

1044
2024/3/2 20:06:09
栏目: 编程语言
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在PyTorch中,可以使用torch.quantization模块来进行模型的量化。具体步骤如下:

  1. 定义模型并加载预训练的模型参数。
import torch
import torchvision.models as models

model = models.resnet18(pretrained=True)
model.eval()
  1. 创建一个量化的模型。
import torch.quantization

quantized_model = torch.quantization.quantize_dynamic(
    model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8
)
  1. 评估量化模型的性能。
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms

transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

dataset = datasets.ImageNet(root='path_to_ImageNet', split='val', transform=transform)
loader = DataLoader(dataset, batch_size=1)

def evaluate(model):
    model.eval()
    model = model.to('cuda')
    
    total_correct = 0
    total_samples = 0
    
    with torch.no_grad():
        for images, labels in loader:
            images = images.to('cuda')
            labels = labels.to('cuda')
            
            outputs = model(images)
            _, predicted = torch.max(outputs, 1)
            
            total_samples += labels.size(0)
            total_correct += (predicted == labels).sum().item()
    
    accuracy = total_correct / total_samples
    print(f'Accuracy: {accuracy}')

evaluate(quantized_model)

通过以上步骤,你可以使用PyTorch的量化功能对模型进行量化,并评估量化后模型的性能。

辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读: pytorch加速内存占用会变吗