tensorflow中vgg搭建的步骤是什么

1716
2024/4/5 15:22:03
栏目: 深度学习
开发者测试专用服务器限时活动,0元免费领,库存有限,领完即止! 点击查看>>

在TensorFlow中搭建VGG模型的步骤如下:

  1. 导入必要的库和模块:
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense
  1. 定义VGG网络的结构:
def build_vgg(input_shape):
    model = tf.keras.Sequential()
    
    # Block 1
    model.add(Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=input_shape))
    model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))
    
    # Block 2
    model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))
    
    # Block 3
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))
    
    # Block 4
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2))
    
    # Block 5
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2))
    
    model.add(Flatten())
    
    # Fully connected layers
    model.add(Dense(4096, activation='relu'))
    model.add(Dense(4096, activation='relu'))
    model.add(Dense(1000, activation='softmax'))
    
    return model
  1. 编译模型并进行训练:
input_shape = (224, 224, 3)
vgg_model = build_vgg(input_shape)
vgg_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
vgg_model.fit(train_images, train_labels, epochs=10, batch_size=32, validation_data=(validation_images, validation_labels))

这样就可以在TensorFlow中搭建VGG模型并进行训练了。

辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>

推荐阅读: tensorflow单机多卡训练怎么实现