PyTorch提供了多种分布式训练设置,以帮助用户利用多台机器上的GPU资源来加速模型的训练。以下是使用PyTorch进行分布式训练的几种常见方法:
torch.distributed
模块torch.distributed
是PyTorch提供的用于分布式计算的模块。它支持多种通信后端,如NCCL、Gloo和MPI。
首先,需要初始化分布式环境。可以使用torch.distributed.init_process_group
函数来完成这一步。
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
def setup(rank, world_size):
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def demo_basic(rank, world_size):
setup(rank, world_size)
model = torch.nn.Linear(10, 10).to(rank)
ddp_model = DDP(model, device_ids=[rank])
# 训练代码...
cleanup()
if __name__ == "__main__":
world_size = 4
torch.multiprocessing.spawn(demo_basic, args=(world_size,), nprocs=world_size, join=True)
在上面的示例中,setup
函数用于初始化分布式环境,cleanup
函数用于清理环境。demo_basic
函数创建了一个简单的线性模型,并使用DistributedDataParallel
(DDP)将其包装起来,以便在多个GPU上进行分布式训练。
torch.nn.parallel.DistributedDataParallel
DistributedDataParallel
是PyTorch提供的一个高级API,用于在多个GPU上进行模型训练。它可以自动处理模型的并行化和通信。
使用DistributedDataParallel
的示例代码如下:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.datasets import CIFAR10
class SimpleDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx], self.labels[idx]
def train(rank, world_size):
setup(rank, world_size)
model = nn.Linear(10, 10).to(rank)
ddp_model = nn.parallel.DistributedDataParallel(model, device_ids=[rank])
optimizer = optim.SGD(ddp_model.parameters(), lr=0.01)
dataset = SimpleDataset(torch.randn(100, 10), torch.randint(0, 10, (100,)))
sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=world_size, rank=rank)
dataloader = DataLoader(dataset, batch_size=10, sampler=sampler)
for epoch in range(10):
sampler.set_epoch(epoch)
for data, labels in dataloader:
optimizer.zero_grad()
outputs = ddp_model(data)
loss = nn.CrossEntropyLoss()(outputs, labels)
loss.backward()
optimizer.step()
cleanup()
if __name__ == "__main__":
world_size = 4
torch.multiprocessing.spawn(train, args=(world_size,), nprocs=world_size, join=True)
在上面的示例中,我们定义了一个简单的数据集SimpleDataset
,并使用DistributedSampler
来确保每个进程获得不同的数据样本。然后,我们使用DistributedDataParallel
对模型进行包装,并在多个GPU上进行训练。
torch.nn.parallel.DistributedDataParallel
与torch.nn.parallel.BroadcastModule
在某些情况下,可能需要将模型的参数或缓冲区广播到所有进程。torch.nn.parallel.BroadcastModule
可以帮助实现这一点。
使用BroadcastModule
的示例代码如下:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.datasets import CIFAR10
class SimpleDataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx], self.labels[idx]
class BroadcastModel(nn.Module):
def __init__(self, model):
super(BroadcastModel, self).__init__()
self.model = model
def forward(self, x):
return self.model(x)
def train(rank, world_size):
setup(rank, world_size)
model = nn.Linear(10, 10).to(rank)
broadcast_model = BroadcastModel(model)
optimizer = optim.SGD(broadcast_model.parameters(), lr=0.01)
dataset = SimpleDataset(torch.randn(100, 10), torch.randint(0, 10, (100,)))
sampler = torch.utils.data.distributed.DistributedSampler(dataset, num_replicas=world_size, rank=rank)
dataloader = DataLoader(dataset, batch_size=10, sampler=sampler)
for epoch in range(10):
sampler.set_epoch(epoch)
for data, labels in dataloader:
optimizer.zero_grad()
outputs = broadcast_model(data)
loss = nn.CrossEntropyLoss()(outputs, labels)
loss.backward()
optimizer.step()
cleanup()
if __name__ == "__main__":
world_size = 4
torch.multiprocessing.spawn(train, args=(world_size,), nprocs=world_size, join=True)
在上面的示例中,我们定义了一个BroadcastModel
类,该类包装了原始模型,并将其传递给DistributedDataParallel
。这样,我们可以在多个进程之间广播模型的参数和缓冲区。
torch.distributed
模块提供的同步机制来实现这一点。希望这些信息能帮助你设置PyTorch的分布式训练环境!如有任何问题,请随时提问。
辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读: pytorch画图怎样保存绘图结果